Перечислимое множество - meaning and definition. What is Перечислимое множество
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is Перечислимое множество - definition

Рекурсивно перечислимое множество; Рекурсивное множество; Перечислимые множества; Диофантово множество; Диофантовость

Перечислимое множество         

рекурсивно-перечислимое множество, множество натуральных чисел или каких-либо других конструктивных объектов (См. Конструктивные объекты), занумерованных натуральными числами, являющееся множеством значений некоторой общерекурсивной функции. См. Рекурсивные функции.

Перечислимое множество         
Перечисли́мое мно́жество (эффекти́вно перечислимое, рекурси́вно перечислимое, полуразреши́мое множествоА. Е. Пентус, М. Р. Пентус, Математическая теория формальных языков, Лекция 14: Алгоритмические проблемы // Интуит.ру, 09.07.2007 ) — множество конструктивных объектов (например, натуральных чисел), все элементы которого могут быть получены с помощью некоторого алгоритма. Дополнение перечислимого множества называется корекурсивно перечислимым. Всякое перечислимое множество является арифметическим. Корекурсивно перечислимое множество может не быть пе
Канторово множество         
  • Cantor set, in seven iterations
ОДИН ИЗ ПРОСТЕЙШИХ ФРАКТАЛОВ, ПОДМНОЖЕСТВО ЕДИНИЧНОГО ОТРЕЗКА ВЕЩЕСТВЕННОЙ ПРЯМОЙ
Множество Кантора; Множество кантора; Кантора множество; Канторовское множество; Канторова пыль; Канторов дисконтинуум; Канторов куб
Ка́нторово мно́жество (канторов дисконтинуум, канторова пыль) — один из простейших фракталов, подмножество единичного отрезка вещественной прямой, которое является классическим примером дисконтинуума в математическом анализе.

Wikipedia

Перечислимое множество

Перечисли́мое мно́жество (эффекти́вно перечислимое, рекурси́вно перечислимое, полуразреши́мое множество) — множество конструктивных объектов (например, натуральных чисел), все элементы которого могут быть получены с помощью некоторого алгоритма. Дополнение перечислимого множества называется корекурсивно перечислимым. Всякое перечислимое множество является арифметическим. Корекурсивно перечислимое множество может не быть перечислимым, но всегда является арифметическим. Перечислимые множества соответствуют уровню Σ 1 0 {\displaystyle \Sigma _{1}^{0}} арифметической иерархии, а корекурсивно перечислимые — уровню Π 1 0 . {\displaystyle \Pi _{1}^{0}.}

Всякое разрешимое множество является перечислимым. Перечислимое множество является разрешимым тогда и только тогда, когда его дополнение также перечислимо. Другими словами, множество является разрешимым в том и только том случае, когда оно и перечислимо, и корекурсивно перечислимо. Подмножество перечислимого множества может не быть перечислимым (и даже может не быть арифметическим).

Совокупность всех перечислимых подмножеств N {\displaystyle \mathbb {N} } является счётным множеством, а совокупность всех неперечислимых подмножеств N {\displaystyle \mathbb {N} }  — несчётным.

What is Перечисл<font color="red">и</font>мое мн<font color="red">о</font>жество - meaning and defin